- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Meyer, Cullan A (1)
-
Nelms, Brad (1)
-
Schmitz, Robert J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The rate and spectrum of somatic mutations can diverge from that of germline mutations. This is because somatic tissues experience different mutagenic processes than germline tissues. Here, we use nanorate sequencing (NanoSeq) to identify somatic mutations in Arabidopsis shoots with high sensitivity. We report a somatic mutation rate of 3.6x10^-8 mutations/bp, ~4-5x the germline mutation rate. Somatic mutations displayed elevated signatures consistent with oxidative damage, UV damage, and transcription-coupled nucleotide excision repair. Both somatic and germline mutations were enriched in transposable elements and depleted in genes, but this depletion was greater in germline mutations. Somatic mutation rate correlated with proximity to the centromere, DNA methylation, chromatin accessibility, and gene/TE content, properties which were also largely true of germline mutations. We note DNA methylation and chromatin accessibility have different predicted effects on mutation rate for genic and non-genic regions; DNA methylation associates with a greater increase in mutation rate when in non-genic regions, and accessible chromatin associates with a lower mutation rate in non-genic regions but a higher mutation rate in genic regions. Together, these results characterize key differences and similarities in the genomic distribution of somatic and germline mutations.more » « lessFree, publicly-accessible full text available June 16, 2026
An official website of the United States government
